Nonparametric Bayes Kernel-Based Priors for Functional Data Analysis

نویسندگان

  • Richard F. MacLehose
  • David B. Dunson
  • Richard MacLehose
  • David Dunson
چکیده

We focus on developing nonparametric Bayes methods for collections of dependent random functions, allowing individual curves to vary flexibly while adaptively borrowing information. A prior is proposed, which is expressed as a hierarchical mixture of weighted kernels placed at unknown locations. The induced prior for any individual function is shown to fall within a reproducing kernel Hilbert space. We allow flexible borrowing of information through the use of a hierarchical Dirichlet process prior for the random locations, along with a functional Dirichlet process for the weights. Theoretical properties are considered and an efficient MCMC algorithm is developed, relying on stick-breaking truncations. The methods are illustrated using simulation examples and an application to reproductive hormone data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional clustering by Bayesian wavelet methods

We propose a nonparametric Bayes wavelet model for clustering of functional data. The wavelet-based methodology is aimed at the resolution of generic global and local features during clustering and is suitable for clustering high dimensional data. Based on the Dirichlet process, the nonparametric Bayes model extends the scope of traditional Bayes wavelet methods to functional clustering and all...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Unobserved Heterogeneity in Longitudinal Data An Empirical Bayes Perspective

Abstract. Empirical Bayes methods for Gaussian and binomial compound decision problems involving longitudinal data are considered. A new convex optimization formulation of the nonparametric (Kiefer-Wolfowitz) maximum likelihood estimator for mixture models is used to construct nonparametric Bayes rules for compound decisions. The methods are illustrated with some simulation examples as well as ...

متن کامل

Nonparametric Bayesian Kernel Models

Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalization of kernel regression based on nonparametric Bayesian models. Functional analytic results ensure that such a nonparametric prior specification induces a class of functions that span ...

متن کامل

Bayesian Aspects of Some Nonparametric Problems

We study the Bayesian approach to nonparametric function estimation problems such as nonparametric regression and signal estimation. We consider the asymptotic properties of Bayes procedures for conjugate (=Gaussian) priors. We show that so long as the prior puts nonzero measure on the very large parameter set of interest then the Bayes estimators are not satisfactory. More specifically, we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007